Microscopes And Cell Theorymr. Mac's Page



Microscope
  1. Microscopes And Cell Theorymr. Mac's Pages
  2. Microscopes And Cell Theorymr. Mac's Page Login
  3. Microscopes And Cell Theorymr. Mac's Page Number

Look through a microscope and discover a small world made of ever expanding cells of 3 colors. Launch a cell against one of the same color to make them both disappear. Launch it against a cell of a different color and a new cell of the third color will be created. Cells are aging and become sick and dark. The lungs represent an attractive route for drug delivery and vaccination. Staquicini et al. Describe the identification and validation of the ligand peptide CAKSMGDIVC and its cell surface receptor, the α3β1 integrins expressed in lung epithelial cells. This new ligand-directed pulmonary delivery system can be leveraged towards multiple applications, including aerosol vaccination. Best deal on microscope for kids. AmScope 120X - 1200X microscope: $54.99 $44.99 at Amazon AmScope's beginner compound microscope is the perfect tool for kids who love to explore the world around. The digital microscope functions as a standard stand-alone microscope, but since it includes a digital camera, it can also be connected to the computer with the included USB cable and becomes a digital video microscope. Once connected, the included microscope software allows the user to view a live image on the computer. As compared to light microscope, the resolving power of electron microscope is. Scanning electron microscope.

  • The simple microscope
    • Principles
  • The compound microscope
    • The objective
  • Specialized optical microscopes
Please select which sections you would like to print:
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.

Our editors will review what you’ve submitted and determine whether to revise the article.

Join Britannica's Publishing Partner Program and our community of experts to gain a global audience for your work!
Articles from Britannica Encyclopedias for elementary and high school students.
Brian J. FordSee All Contributors
Research biologist, Cambridgeshire, England, and fellow of Cardiff University, Wales. Author of Using the Digital Microscope and many books explaining and popularizing science.
Alternative Title: microscopy

Microscope, instrument that produces enlarged images of small objects, allowing the observer an exceedingly close view of minute structures at a scale convenient for examination and analysis. Although optical microscopes are the subject of this article, an image may also be enlarged by many other wave forms, including acoustic, X-ray, or electron beam, and be received by direct or digital imaging or by a combination of these methods. The microscope may provide a dynamic image (as with conventional optical instruments) or one that is static (as with conventional scanning electron microscopes).

What is a microscope?

MicroscopesMicroscopes and cell theorymr. mac

A microscope is an instrument that makes an enlarged image of a small object, thus revealing details too small to be seen by the unaided eye. The most familiar kind of microscope is the optical microscope, which uses visible light focused through lenses.

What does “microscope” mean?

The word “microscope” comes from the Latin “microscopium,” which is derived from the Greek words “mikros,” meaning “small,” and “skopein,” meaning “to look at.”

Who invented the microscope?

It is not definitively known who invented the microscope. However, the earliest microscopes seem to have been made by Dutch opticians Hans Janssen and his son Zacharias Janssen and by Dutch instrument maker Hans Lippershey (who also invented the telescope) about 1590.

What are microscope slides?

Microscope slides are small rectangles of transparent glass or plastic, on which a specimen can rest so it can be examined under a microscope.

The magnifying power of a microscope is an expression of the number of times the object being examined appears to be enlarged and is a dimensionless ratio. It is usually expressed in the form 10× (for an image magnified 10-fold), sometimes wrongly spoken as “ten eks”—as though the × were an algebraic symbol—rather than the correct form, “ten times.” The resolution of a microscope is a measure of the smallest detail of the object that can be observed. Resolution is expressed in linear units, usually micrometres (μm).

The most familiar type of microscope is the optical, or light, microscope, in which glass lenses are used to form the image. Optical microscopes can be simple, consisting of a single lens, or compound, consisting of several optical components in line. The hand magnifying glass can magnify about 3 to 20×. Single-lensed simple microscopes can magnify up to 300×—and are capable of revealing bacteria—while compound microscopes can magnify up to 2,000×. A simple microscope can resolve below 1 micrometre (μm; one millionth of a metre); a compound microscope can resolve down to about 0.2 μm.

Images of interest can be captured by photography through a microscope, a technique known as photomicrography. From the 19th century this was done with film, but digital imaging is now extensively used instead. Some digital microscopes have dispensed with an eyepiece and provide images directly on the computer screen. This has given rise to a new series of low-cost digital microscopes with a wide range of imaging possibilities, including time-lapse micrography, which has brought previously complex and costly tasks within reach of the young or amateur microscopist.

Get a Britannica Premium subscription and gain access to exclusive content. Subscribe Now

Other types of microscopes use the wave nature of various physical processes. The most important is the electron microscope, which uses a beam of electrons in its image formation. The transmission electron microscope (TEM) has magnifying powers of more than 1,000,000×. TEMs form images of thin specimens, typically sections, in a near vacuum. A scanning electron microscope (SEM), which creates a reflected image of relief in a contoured specimen, usually has a lower resolution than a TEM but can show solid surfaces in a way that the conventional electron microscope cannot. There are also microscopes that use lasers, sound, or X-rays. The scanning tunneling microscope (STM), which can create images of atoms, and the environmental scanning electron microscope (ESEM), which generates images using electrons of specimens in a gaseous environment, use other physical effects that further extend the types of objects that can be examined.

Quick Facts
key people
related topics

The objective collects a fan of rays from each object point and images the ray bundle at the front focal plane of the eyepiece. The conventional rules of ray tracing apply to the image formation. In the absence of aberration, geometric rays form a point image of each object point. In the presence of aberrations, each object point is represented by an indistinct point. The eyepiece is designed to image the rays to a focal point at a convenient distance for viewing the image. In this system, the brightness of the image is determined by the sizes of the apertures of the lenses and by the aperture of the pupil of the eye. The focal length and resulting magnification of the objective should be chosen to attain the desired resolution of the object at a size convenient for viewing through the eyepiece. Image formation in the microscope is complicated by diffraction and interference that take place in the imaging system and by the requirement to use a light source that is imaged in the focal plane.

The modern theory of image formation in the microscope was founded in 1873 by the German physicist Ernst Abbe. The starting point for the Abbe theory is that objects in the focal plane of the microscope are illuminated by convergent light from a condenser. The convergent light from the source can be considered as a collection of many plane waves propagating in a specified set of directions and superimposed to form the incident illumination. Each of these effective plane waves is diffracted by the details in the object plane: the smaller the detailed structure of the object, the wider the angle of diffraction.

Microscopes And Cell Theorymr. Mac's Pages

The structure of the object can be represented as a sum of sinusoidal components. The rapidity of variation in space of the components is defined by the period of each component, or the distance between adjacent peaks in the sinusoidal function. The spatial frequency is the reciprocal of the period. The finer the details, the higher the required spatial frequency of the components that represent the object detail. Each spatial frequency component produces diffraction at a specific angle dependent upon the wavelength of light. As an example, spatial frequency components having a period of 1 μm would have a spatial frequency of 1,000 lines per millimetre. The angle of diffraction for such a component for visible light with a wavelength of 550 nanometres (nm; 1 nanometre is 10−9 metre) will be 33.6°. The microscope objective collects these diffracted waves and directs them to an image plane, where interference between the diffracted waves produces an image of the object.

Because the aperture of the objective is limited, not all the diffracted waves from the object can be transmitted by the objective. Abbe showed that the greater the number of diffracted waves reaching the objective, the finer the detail that can be reconstructed in the image. He designated the term numerical aperture (N.A.) as the measure of the objective’s ability to collect diffracted light and thus also of its power to resolve detail. On this basis it is obvious that the greater the magnification of the objective, the greater the required N.A. of the objective. The largest N.A. theoretically possible in air is 1.0, but optical design constraints limit the N.A. that can be achieved to around 0.95 for dry objectives.

Microscopes And Cell Theorymr. Mac's Page Login

For the example above of a specimen with a spatial frequency of 1,000 lines per millimetre, the required N.A. to collect the diffracted light would be 0.55. Thus, an objective of 0.55 N.A. or greater must be used to observe and collect useful data from an object with details spaced 1 μm apart. If the objective has a lower N.A., the details of the object will not be resolved. Attempts to enlarge the image detail by use of a high-power eyepiece will yield no increase in resolution. This latter condition is called empty magnification.

Microscopes And Cell Theorymr. Mac's Page Number

The wavelength of light is shortened when it propagates through a dense medium. In order to resolve the smallest possible details, immersion objectives are able to collect light diffracted by finer details than can objectives in air. The N.A. is multiplied by the index of refraction of the medium, and working N.A.’s of 1.4 are possible. In the best optical microscopes, structures with spatial frequency as small as 0.4 μm can be observed. Note that the single lenses made by Leeuwenhoek have been shown to be capable of resolving fibrils only 0.7 μm in thickness.